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The electron drift mobilities of the five direct-gap III-V semiconductors GaAs, GaSh, InP,
InAs, and InSb are presented as a function of temperature. Polar-mode, deformation-potential
acoustic, and piezoelectric scattering are included, as well as nonparabolic conduction bands

and the corresponding electron wave functions.

The drift mobility follows exactly from the

assumed model by a simple iterative technique of solution which retains all the advantages of
variational techniques without, however, the need for excessive mathematical detail. Piezo-
electric scattering is shown to be considerable in GaAs for temperatures below 100 °K. The
agreement between theory and experiment for GaAs is satisfactory.

I. INTRODUCTION

In recent years, considerable interest has de-
veloped toward the study!’Z and use®* of compound
semiconductors. The materials about which the
most detailed information is available possess di-
rect energy gaps and are derived from elements
in columns III and V of the Periodic Table, These
semiconductors are five in number: GaAs, GaSb,
InP, InAs, and InSb,

Compound semiconductors are peculiarly useful
because electron transport at high (but easily
achieved)electric fields is dominated by the com-
plex conduction-band structure well above the low-

est band edge.s'6 Devices relying on the influence
of the higher-energy areas of the conduction band
represent a new class of applications (e.g., bulk
effects™®) distinct from that involving energies
within a few times the thermal energy of the band
edge. Obviously, one now has a wider selection
of band structures available, as compared to col-
umn-IV semiconductors alone. In addition, the
five semiconductors listed above have exhibited
some of the highest electron mobilities attained
in the liquid-nitrogen to room-temperature range.
Hall effect detector devices, of course, operate
more efficiently with high mobilities,

The electron mobility is a popular parameter
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used to characterize the microscopic quality of
crystals. Accurate comparisons between experi-
ment and theory are important for determining a
variety of fundamental material constants and elec-
tron scattering mechanisms through which high-
field transport properties can be calculated’ This
procedure ultimately exposes potential areas of
device applications,

Having reviewed some advantages of compound
semiconductors, we now state the purpose of the
present paper and briefly review the status of mo-
bility calculations (see also the review by Blatt®).

The purpose of this paper is to present calcula-
tions of the electron mobility in direct-gap polar
semiconductors, In particular, the calculations
are exact once the fairly accurate model (described
below) of the material is assumed. Results are
presented for pure III-V semiconductors. The
method of calculating the mobility relies on the
fact that a great deal of analytical progress can be
achieved regarding the scattering terms of the
Boltzmann equation. An explicit expression for
the electron distribution function perturbed by a
small electric field is obtained as a linear finite
difference equation. Several scattering mecha-
nisms are properly combined, and the mobility is
calculated from the perturbed distribution.

Two types of scattering have been previously
shown by Ehrenreich?® to be operative in the (000)
valley of pure nondegenerate semiconductors:
acoustic-mode scattering through the deformation-
potential interaction,!! and polar-optical-mode
scattering.'®!® There is, however, the additional
possibility of piezoelectric scattering,*!® which
has been included here., This type of scattering is
also attributable to acoustic modes, but the inter-
action takes place through piezoelectric coupling
to longitudinal electric fields.'®’!” In fact, it turns
out that piezoelectric scattering is the most im-
portant mode of scattering for lattice temperatures
T below about 60 °K in GaAs. It becomes notice-
able at 100 to 150 °K, below which it is more ef-
fective than deformation-potential scattering.
Thus, the present model includes all three of the
above types of electron scattering. Furthermore,
the various scattering mechanisms are properly
combined before the perturbed electrondistribution
function is calculated so that Matthiessen’s rule
is not invoked,!®

Before scattering effects can be calculated, a
model for the conduction band must be assumed.
Kane'® has accurately determined the structure of
the lowest (000) conduction-band minimum at the
center of the first Brillouin zone as well as the
electron wave functions in this valley. The band
structure results from a simultaneous diagonaliza-
tion of the conduction-valence-band Kk . p interaction
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Hamiltonian and the atomic spin-orbit interaction
Hamiltonian, Electrons at the conduction-band
edge (where the crystal momentum 7 k vanishes)
possess wave functions having the symmetry prop-
erties of s functions with respect to the tetrahedral
group operations, This is to be expected since
these electrons are nonlocalized and are then de-
scribed by plane waves, At energies above the
band edge, the electrons become more localized
so they are able to sense the orbital p states of the
lattice (and atomic spin-orbit coupling) for at least
a small average part of their motion (see, for ex-
ample, Slater?®), The electron wave function is
then given by Kane as a linear combination of s and
p functions., The dependence of electron energy
upon crystal momentum is no longer parabolic.
Regarding transport properties, both the band non-
parabolicity and the functional dependence of the
wave function upon crystal momentum are about
equally important, Hence, the two effects are
treated here simultaneously in a self-consistent
fashion.

Mobility has, in the past, been calculated by re-
laxation time and variational methods,? the partic-
ular method being dictated by scattering mecha-
nisms.?? When the scattering mechanism is elastic,
a relaxation time characterizing the rate at which
momentum decays can be defined, From the re-
laxation time, one can calculate the perturbation
of an equilibrium electron distribution by a small
electric field and, hence, the mobility, When the
scattering is inelastic, no relaxation time exists
exactly, although in certain limits this approxima-
tion can be useful. Actually, for much of the tem-
perature range of interest the relaxation-time con-
cept must be abandoned because of the dominance
of inelastic scattering. The resulting problem has
previously been solved by variational calculations®
in this latter circumstance, Specifically, the fail-
ure of the relaxation-time concept forces one into
a variational approach.

The present mobility calculation includes the
three types of electron scattering mentioned ear-
lier: (i) acoustic-mode deformation-potential
coupling, (ii) acoustic-mode piezoelectric cou-
pling, and (iii) polar-optical-mode polarization
coupling. The first two are elastic processes
while the latter is inelastic, Howarth and Sond-
heimer? have achieved an analytical reduction of
polar-mode scattering [case (iii) above] in the
Boltzmann equation assuming a spherical and para-
bolic conduction-band valley. They apply the re-
sults to a variational calculation proposed by Koh-
ler? and determine the mobility. Ehrenreich?® 28
improved these calculations by including Kane’s'®
picture of the conduction band and by including oth-
er types of scattering in a variational calculation.



1014

With an accurate model of the band structure and
.electron wave functions available,!? an exact mobil-
ity calculation based upon this picture is in order,
The present method avoids much of the purely math-
ematical detail necessary for the variational meth-
od. The procedure is straightforward enough so
that the physics of the results are clear; and, in
fact, we will find that all of the advantages of the
variational approach are preserved, These in-
clude estimating the algebraic sign and the magni-
tude of corrections to approximate solutions as
well as the total avoidance of Matthiessen’s rule.®
One obtains a linear finite difference equation, as
previously,?’ 2 which describes the electron dis-
tribution function under the influence of a small
electric field. The equation is solved by numeri-
cal iteration rather than by the method of Grigor’ev
et al. %" who applied a numerical method to a sim-
pler band-structure model of InSb.

The mobility calculated here includes the three
most significant types of scattering, mentioned
earlier, in pure nondegenerate materials andisac-
curate for the following temperature ranges: for
GaAs ~ 2-500 °K, for GaSb ~2-170 °K, for InP
~2-600 °K, for InAs ~2-400°K, for InSb ~2-250 °K,
The absolute error above 60 °K may be near 15%,
the larger part of which results from uncertainty
in the high- and low-frequency dielectric con-
stants and electron effective mass, Below 100 °K,
the error may be as large as 30%, reflecting some
doubt about the piezoelectric constants and acoustic
deformation potentials.

In Sec. II, the conduction-band model and elec~
tron wave functions from Kane’s work'® are adapt-
ed to the present calculation. The electron distri-
bution function is presented formally in Sec, III
along with a spherical harmonic decomposition of
the Boltzmann equation. In Sec. IV, various scat-
tering mechanisms are discussed and cast into a
form suitable for substitution into the Boltzmann
equation. The electron distribution function in the
presence of a small electric field is determined
explicitly in Sec. V. Material parameters and cal-
culated mobilities are presented in Sec. VI.

II. BAND STRUCTURE AND WAVE FUNCTIONS

The dispersion relation for energy § measured
upward from the conduction-band edge at k
=(0, 0, 0) is given by Kane'®:
(E-8p)(E-80+8,)(E-8y+68, +4)

—gogﬁ(8—€0+8g +%A)=0 . (1)

8, is the effective-mass energy gap as discussed
by Ehrenrich, ® A is the spin-orbit splitting of the
valence band, and

8o=N%k%¥2m , (2)
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where m is the free-electron mass. &, character-
izes the strength of the conduction-band—-valence-
band coupling. The cubic [Eq. (1)] can be reduced
to an expression quadratic in energy if the spin-
orbit splitting is neglected. In fact, we assume
that A =0, This approximation is as accurate as
Eq. (1) to the following errors in energy: (a) for
<3468, error 5 4.2% (maximum error at A

=4 82), (b) for & < 8, error 5 2.3% (maximum
error at A%= £82), In particular, the actual er-
ror in GaAs is about half these maximum values
since A is rather small*® (A » 0. 22&,). For accu-
racy beyond a few percent one must include the in-
fluence of higher-lying conduction-band valleys
anyway. Hence, the energy is to be taken from
Eq. (1) with A=0:

§=80+(a-1)18,, (3)
where a?=1+48,(m - m*)/m* &, (4)

and #* is the electron effective mass at the con-
duction-band edge.

The quantity a is greater than or equal to (at
£ =0) unity, and for small energies Eq. (3) simply
yields the parabolic relation between energy and
crystal momentum, & =%#2k%2m* . Equations (3)
and (4) describe a subparabolic §-versus-% rela-
tion. The density-of-states function in energy
space must therefore be superlinear versus %,
Equivalently, one can regard the effective mass
as a weakly increasing function of crystal momen-
tum, This augmented density of states, relative
to that for a parabolic band, which we shall denote
as d will appear again later in relation to electron
scattering rates (Sec. IV):

1_ ‘ﬁ/z
iy 7k, (5)

From Eq. (3),
(6)

1/d =1 +(m—-m*)/m*a,

where « is defined by Eq. (4). When the crystal
momentum vanishes m-d = m*,

The transition rate between two electron states
with crystal momenta # K and 7k’ is directly pro-
portional to the absolute square of the overlap in-

‘tegral of the respective wave functions.?® In the

present band picture, the electron wave function

¢. o is constructed from an s function and a p func-
tion, the major part of ¢, being of type s. The
small p-function admixture accounts for the elec-
tron interaction with the light-mass and split-off
valence bands which, of course, are now degener-
ate at £=0 since A=0. For one spin direction a,*®

Pea =aliSV) +c[Z 4], (7)

where |iS¥) and | Z V) are basis functions with 4
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meaning spin up and ¥ meaning spin down and
primes denoting coordinate and spin transforma-
tions. The real coefficients a and ¢ are non-nega-
tive functions of crystal momentum [see Eq. (4)].
These coefficients follow simply in the A=0 ap-
proximation which again represents the scattering
rate accurately to within a few percent:

2a2=1+1/a, (8)
a’+c=1, 9)

When the crystal momentum approaches zero,
a-1and ¢~ 0. These coefficients provide the ab-
solute square of the overlap integral G(K,K’) in
terms of band parameters and the crystal momen-
ta before and after scattering, # Kk and hK’, re-
spectively. Applying Matz’s results®® with A=0,
we have

G, k') =(aa’ +cc’ x)?, (10)

where x equals the cosine of the angle between k
and k’, and (a, c) are evaluated at K while (a’,c’)
are evaluated atk’

Equations (1)-(10) complete the necessary for-
‘malism of band structure and wave functions, The
particular material to be described enters through
the two parameters, m* the effective mass at the
conduction-band edge, and &, the effective-mass
energy gap. m* will be taken to be temperature
independent in the present treatment, although &,
is variable with temperature according to Ehren-
reich, %

8,(T)=8,(0)-31IT (%‘%)T /K, (11)

where [ is the linear coefficient of thermal expan-
sion, (88,/8P), is the rate of change of band gap
with pressure, and K is the compressibility, These
latter three quantities are assumed temperature
independent,

IIl. BOLTZMANN EQUATION

To determine the low-field drift mobility, one
applies a small electric field ¥ to the electron
population whose equilibrium distribution function
is fy(k) when F =0, The spatially uniform and iso-
tropic distribution f; undergoes a perturbation due
to the electric field so that the distribution in the
presence of the field can be written exactly [see
the discussion following Eq. (17)] as

FE&) =folk) +xg(k) , (12)

where 2 =|K | and x is the cosine of the angle be-
tween kK and ¥. The perturbation distribution g
will be determined explicitly in Sec, V. The in-
duced drift current is entirely contained in the per-
turbation distribution,

For a nondegenerate semiconductor, the Boltz-
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mann equation connects g through the scattering
mechanisms to the electric field and f;;:

== (e/n)F % f(®)
+ [aRs® B @) -s& &) ®].  (13)

s(k’,K) is the probability per unit time that an elec-
tron initially in the state characterized by K’ will
make a transition into the state characterized by
K. The differential scattering rate s comprises
several scattering mechanisms to be considered
in detail in Sec. IV. For the moment, we note
that the first integrand corresponds to scattering
into the differential element dK while the second
integrand corresponds to scattering out of dK.
These terms give rise to the following scattering
probability fluxes:

v, 0= [aR[s® R f,(#)] , (14)
v, V= [ak[s® kKng®)] (15)
v\ = folk) [ dk[s(k, k"], (16)
v = xg(p) [ dk'[s(k,k")], an

wherek=|K |,k = | K|, and ¥’ is the cosine of
the angle between k’ and F. A subscript o denotes
scattering out; ¢ denotes scattering in, It turns
out that (Sec. IV) v,'? and v,‘® are isotropic in
momentum space, while v;'¥ and v, are directly

-proportional to the cosine of the angle between k

and . This result offers the a fortiori proof that
Eq. (12) is indeed exact as ¥ becomes small,

A spherical harmonic analysis can now be used
to separate the Boltzmann equation into the follow~
ing two equations (see, for example, Baraff?),
Multiplication of Eq. (13) by unity, the zeroth-or-
der Legendre polynomial, and integration over x
yields

gk (3

where F =| ¥|. Multiplication by the first-order
Legendre polynomial ¥ and integration over x pro-
vides the remaining equation

eF afolk) p, Dy 0

n ok x : (19)

The right-hand side of Eq. (19) is independent of

x since the scattering probability fluxes due to g
are proportional to x. The first of these two equa-
tions [Eq. (18)] simply guarantees that f, is the
equilibrium Boltzmann distribution. This follows
since g is proportional to ¥ so that the left-hand
side of Eq. (18) vanishes in first order while »;,®
and v,'® are of zeroth order in F. The right-hand
side of Eq. (18) therefore vanishes for the isotrop-
ic distribution f, [Eqs. (14) and (16)]. This is the
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equilibrium equation and, hence, f; follows at once
as the Boltzmann distribution,

The perturbation distribution g is contained in
Eq. (19) through the scattering probability fluxes
v;¥ and v, Both sides of Eq. (19) must be of
first order in ¥, In Sec. IV, the scattering proba-
bility fluxes discussed above will be calculated for
the various scattering mechanisms of interest
here. Those results can then be combined with
Eq. (19) to yield an explicit formula for the per-
turbed distribution,

IV. POLAR-OPTICAL, DEFORMATION-POTENTIAL,
AND PIEZOELECTRIC SCATTERING

The scattering probability fluxes of Sec. III can
be calculated analytically without approximation
from the differential scattering rates including the
present band-structure formalism. This fact has
been shown previously by Howarth and Sondheimer?*
for parabolic bands and by Ehrenreich® for a
slightly different form of Kane’s!® band model and
for polar-mode scattering. Since the procedure is
similar for deformation-potential and piezoelectric
scattering, the details of the integration of Eqs.
(14)-(17) need not be repeated here. We note that
the differential scattering rates denoted by s in
Eqs. (14)-(17) consist of sums of differential scat-
tering rates due to (a) polar-mode scattering s,
(b) piezoelectric scattering s,,, and (c) deforma-
tion-potential acoustic-mode scattering s,,. These
are probably the only important scattering mecha-
nisms in pure nondegenerate polar semiconductors
possessing direct gaps for the temperatures indi-
cated in Sec. I.%°

The inelastic scattering of electrons by polar-
optical modes takes place through the coupling of
the electron to the associated electric field of the
polarization wave,'*!® The differential scattering
rate for this process is found from time-dependent
perturbation theory to be proportional to the abso-
lute square of the matrix element of the perturbing
potential (Golden Rule No. 2). For the nonpara-
bolic band model of Sec. II, it results that one need
only multiply the matrix element determined for
parabolic bands by the overlap integral of the wave
functions.?® Matz® calculated the overlap integral
for Kane’s theory, and his result adapted to the
present model is given by Eq. (10). The matrix
element for scattering by polar modes appears in
the literature.?% Substitution into Eq. (16) yields
the following result for the scattering-out proba-
bility flux due to f; and only polar-mode scattering:

md*

Ve =folkt) TN S
%

*
X <A*2 ln!:%:‘ —A*cc*—aca*c*), (20)

2

where A*=aa™ + E*2 +k%)cc*/28%E | (21)

The summation index * takes on the values + and
-, corresponding, respectively, to scattering out
from the differential element d k by phonon absorp-
tion and by phonon emission, Any quantity super-
fixed by * is to be evaluated at the energy corre-
sponding to K plus or minus (according to the val-
ue of *) the energy %w,, of a longitudinal polar-
optical phonon at the center of the first Brillouin
zone, Of course, when %2 corresponds to an energy
less than the polar-phonon energy the phononemis-
sion term (*~-) of Eq. (20) is understood to be
omitted. d* is the relative density-of-states func-
tion, Eq. (6). The a, ¢, a*, and ¢* are wave-
function coefficients [Eqs. (8) and (9)]. The ener-
gy-independent (#-independent) constant A¥ con-

tains all the temperature dependence of {2 :

e? 1 1
7\3=—497;‘§§ <;:—'€;>[Npo+%*(—%)] . (22)

The high- and low-frequency dielectric constants
are €, and €;,. For the small electric fields under
present consideration, the phonon population must
be at equilibrium so that the average number of
phonons N, in the polar vibration mode with which
the electron is interacting is given by the Bose dis-
tribution:

1/N,, = exp(Z w,,/kT) - 1. (23)

From Eq. (20), it is evident that ) is isotrop-
ic in momentum space and directly proportional to
fo(k). Inthis case and, in general, for scattering-
out probability fluxes, one can define the scatter-
ing vate S,,, (k) which depends upon only the mag-
nitude of k and which is independent of the distribu-
tion function

sopo :V(o();:o/fo(k) . (24)

The scattering rate hasthe dimension inversetime,
The scattering-in probability flux is

md*
V(iolzo :E fo(k*)X‘; -hjz—
*

kY +k
Xk

X (A *2 In

-A%ce* - aca*c*> , (25)

where the temperature dependence again appears
through A% :

2 *
x _Cwy/ 1 1 1*1
Ny =g (ew €0>(N,0+2 5) - (26)

The scattering-iz and scattering-out fluxes [Eqs.
(20) and (25)] are identical but (i) the former in-
volves the distribution function at 2* and %~ as well
as at 2, and (ii) the phonon occupation number fac-
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tors in the constants A¥ and )x"; are permuted rela-
tive to one another, Regarding this latter point,
Eqgs. (22) and (26) show that scattering iz from an
initial state K’ =Kk* to the statek is proportional to N,,
+1 (corresponding to phonon emission). However,
time reversal of the same processgives scattering
out from the initial statek tothe statek’=k* as pro-
portional to only N,, (phonon absorption). The ex-
planation is simply that time reversal transforms
the emission process into an absorption process
and vice versa. This explains the difference be-
tween 1% and 7\":, and also the point that the princi-
ple of detailed balance suggests, that S(k’, k)

=S (k,k’)if and only if the scattering process is
elastic.?*% It is precisely this point which pro-
vides the fundamental difference between scattering
terms in the Boltzmann equation for nondegenerate
statistics and degenerate statistics. Our results
apply only to the former case, The reader can
verify from Eqs. (20), (23), and (25) that v,

=v'% implies that f; is the Boltzmann distribution,

The scattering fluxes due to the perturbation dis- '

tribution follow from Eqs. (15) and (17). For po-
lar-mode scattering
(01&, = opo xg(k) (27)

and vE, =2, xgB* W\, (md*/nk)

k+k

X((k*z Z)A*Z In

/Zk*k

—A*2—§C20*2> . (28)

For an inelastic scattering process, like polar-
mode scattering, a scattering-in rate evaluated at
the energy corresponding to # cannot be defined
since the scattering-in flux is proportional to the
distribution function at this energy plus or minus

a phonon energy. In this case, we denote the scat-
tering-in rate as Sy,

v = 2, xg(R*)S%,, . (29)

The superscript * signifies explicitly that S}"m is
evaluated at 2* and %,

The second of the three types of scattering to be
included is deformation-potential scattering by
acoustic modes of lattice vibration.}! This process
can be considered elastic.®! For parabolic bands,
deformation-potential scattering is fully random-
izing [i.e., s, (K’,K) independent of the angle be-
tween k’ and k] and the scattering-in term of Eq.
(15) due to the perturbation distribution g vanishes.
However, s, (K’ k) is not randomizing for the pres-
ent band model and the scattering-iz flux due to g
does not vanish. The matrix element, available
in the literature® is multiplied by the overlap in-
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tegral Eq. (10) and Egs. (14)—(17) are evaluated un-
der the assumption that the acoustic phonon occu-
pation number attains its equipartition value. This
assumption sets a low-temperature limit to the va-
lidity of the results at about 2 °K:

v O =fokNy (mdk/T)%(3a+ c*) (30)

where A, =e®Eix T/nhi%ou? | (81)

and E, is the acoustic deformation potential, p is
the material density, and #, is the average speed
of sound in the material (see the Appendix). Since
deformation-potential scattering is elastic, for ar-
bitrary f,

v =00, (32)

so that f, is unaffected by this scattering mecha-
nism:

V'L, =xg(k\,, (mdk/%)5(3a* +c*) (33)
and 'Y, =xg(k),, (mdk/T) 5(2a%?) . (34)

As in the case of polar-mode scattering, the scat-
tering fluxes for deformation-potential scattering
are isotropic for f; and proportional to x for g,
thus guaranteeing the success of the spherical har-
monic analysis of Sec., III. Furthermore, both
scattering-in and scattering-out fluxes for this
elastic scattering process depend only upon the
distribution function evaluated at 2. Hence, we
can define a scattering rate which includes both
fluxes simultaneously:

Se =[vie —via]/xgk) . (35)

The final scattering mechanism to be considered
is piezoelectric scattering.'***® Hutson!®'®! has
given the matrix element for this process in para-
bolic bands and we need include the overlap integral
[Eq. (10)]. Piezoelectric coupling occurs in appre-
ciable magnitude only to the longitudinal electric
fields.!” The strength of the coupling is propor-
tional to the piezoelectric constant e,, which, in-
cidentally, is larger in III-V compounds than in
the more ionic cubic II-VI compounds, Arlt and
Quadflieg®® have measured e, for a variety of ma-
terials and have proposed that piezoelectricity is
due to the mechanisms of (a) ionic polarization,

(b) change in ionicity, and (c) electronic polariza-
tion. Recently, Phillips and Van Vechten® pre-
sented theoretical arguments to explain the change
in algebraic sign of e,4 as onegoes from III-Vcom-
pounds to II-VI compounds. Their results suggest
that b above, which accounts for the strain-induced
flow of covalent charge between the zinc-blende
sublattices, may be the dominant source of piezo-
electricity in many of the III-V compounds.

At this point, it is worth remarking that one can-
not calculate a scattering-out rate for piezoelec-



1018 D. L. RODE 2

tric scattering since this quantity is (mathemati-
cally) singular due to the predominance of small-
angle scattering, The scattering probability flux
v'0), does not exist as a finite number. There is,
however, no need for V‘D";, by itself, The meaning-
ful quantity is the difference between scattering in
and scattering outf. This quantity does exist in a
well-behaved manner for piezoelectric scattering,
0) (0 _ 0

Vope =Vipe = (36)

since piezoelectric scattering is elastic [see Eq.
(32)], and

vl —vi) =xg(R)N,, (md/ik) X(3a* +c%) ,  (37)
No=e2ed kT /2med ipul (38)

and €, is the low-frequency dielectric constant.
The speed of sound %, includes the effect of trans-
verse and longitudinal modes and is discussed in
the Appendix. The law of equipartition assump-
tion® again limits the application of Eq. (37 to
temperatures greater than about 2 °K.

Note that Egs. (33) and (37) are quite similar
except that deformation-potential scattering is
directly proportional to the crystal momentum %
of the electron whereas piezoelectric scattering
is inversely proportional to 2. It follows that
piezoelectric scattering must dominate deforma-
tion-potential scattering below a certain tempera-
ture T¢,. This crossover temperature, taking
a=1, occurs at

T~ %%, /dumei B2~ 150 °K . (39)

T, does not vary greatly over the direct-gap
III-V semiconductors. In fact, polar-mode scat-
tering dominates at 150 °K where piezoelectric
scattering effects on the mobility become just
noticeable (~10%). Below about 60 °K in GaAs,
piezoelectric scattering is the dominant mobility-
limiting mechanism. The conclusion is that de-
formation-potential scattering is never dominant
in these semiconductors. Finally, analogous to
Eq. (35) is a scattering rate for piezoelectric
scattering which includes scattering ¢z and scat-
tering out:

Sye "[V:()xI)L "V(i;:] /xg(k) . (40)
V. PERTURBATION DISTRIBUTION FUNCTION

H

where

SectionIV provides explicit formulas for the scat-
tering terms of the Boltzmann equation including
polar-mode, deformation-potential, and piezo-
electric scattering. These results are to be com-
bined in the present section with the results of
Sec. III, the spherical harmonic analysis of the
Boltzmann equation. From Egs. (19), (27), (29),
(35), and (40) directly follows the formula for the
perturbation distribution g.

First, we combine the scattering rates for all
three scattering mechanisms into the total scat-
tering rate Sg:

S0=S0p0 +Sac+Spe - (41)

Note that S, contains all three scattering-ou? rates
as well as the scattering-~in rates for elastic pro-
cesses as shown in Sec. IV. The only scattering-
in rate remaining is due to inelastic polar-mode
scattering. Combining these results leaves

g(k):gzmg(k’) +S}ms(k') - eFf (k) /i ) (42)
0

where fo(k)'=8f,/8k and &* and &~ are as dis-
cussedafter Eq. (21). Equation (42)isa linear finite
difference equation similar to that found previous-
ly.® % However, we will not, as previously, ap-
ply variational methods to the solution of Eq. (42).

The perturbation distribution can be easily and
rapidly found by numerical iteration. We choose
the zeroth-iteration solution g4(2)=0 for all %.
Then

)=~ - (43)

and, in general,
giv1= (S8 +57087 +F()/So (44)

where g} =g;(k*) and F}= —eFf;/f. The first iter-
ation [Eq. (43)] gives the usual result for a relax-
ation approximation, % that g is proportional to
the slope of f;. The solution g, simply ignores
scattering ¢n, which is justifiable at temperatures
well below the Debye temperature of the polar-
optical phonons. This is so because scattering

in by phonon emission is possible for only the very
few electrons which would have a phonon quantum
of energy. Scattering in by the remaining process,
phonon absorption, is also extremely weak since
at low temperatures very few vibrational modes
are occupied by a phonon [see Eq. (23)]. For ex-
ample, in GaAs the polar-phonon Debye tempera-
ture is 420 °K (see Sec. VI) and the use of g, to
calculate the mobility at a lattice temperature of
77 °K leads to an underestimate of the mobility

by only 6.5%. At 300 °K there is a noticeable
amount of scattering ién, and the use of g, leads to
an underestimate of the true mobility by 33%.
Three iterations according to Eq. (44) at 300 °K
give the answer correct to 10%. (In practice, the
results to be presented later are calculated to
less than 1% error.) The relaxation approxima-
tion [Eq. (43)] yields Frohlich’s low-temperature
expression for polar-mode-limited mobility when
deformation-potential and piezoelectric scattering
are omitted. !2
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The above discussion is illustrated in detail by
Figs. 1 and 2, drawn for GaAs. In Fig. 1for T
=77 °K, the total scattering-out rate S, is plotted
as the dashed curve. S is large for small mo-
menta due to piezoelectric scattering. The fairly
constant value of S; over most of the figure rep-
resents scattering out by optical phonon absorp-
tion. Deformation-potential scattering is insig-
nificant. The Boltzmann distribution f, indicates
the location of most electrons in the figure. The
perturbation distribution g is calculated from Eq.
(44) and compared in the figure to g,~ ~ /o /S, from
Eq. (43). The agreement between g and g, is
fairly good, reflecting the 6.5% error in mobility
from g; mentioned earlier.

Figure 2 is identical to Fig. 1 except that the
lattice temperature is now 300 °K so that an ap-
preciable number of electrons carry a phonon
equivalent quantum of energy (~420 °K). The
total scattering rate Sy resembles that of Fig. 1
at low momenta. When 7k > 1.2, the electrons
can emit phonons and S is enhanced by the phonon
emission process. f; again is the Boltzmann dis-
tribution, and the actual perturbation g is com-
pared to that obtained from a relaxation approxi-
mation g;. The disagreement is now considerable
due to the scattering-in terms of Eq. (44).

It can be noted at this point that the present
method of solution for g preserves the same ad-
vantages as variational approaches without, how-
ever, the need for excessive mathematical detail.
The approximate expression gl’is always less than
g because all scattering-in quantities are non-
negative for all momenta. It follows that g;<g

- 77 °K, GaAs
|

|
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|

|

-fz)/ So g
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.
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FIG. 1. Perturbation electron distribution function
g(k) induced by a small electric field. The equilibrium
Boltzmann distribution is f,. The total scattering-out
rate is Sp. —f3/S) represents the relaxation approxi-
mation to the true perturbation distribution g(k) and is
rather accurate for this case of GaAs at 77 °K.

] 300 °K, GO AS

o
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FIG. 2. Same as Fig. 1 except the GaAs lattice tem-
perature T=300°K. The relaxation approximation
(=f0/Sp to the true perturbation distribution g(k) fails
seriously (notice the large disparity between the —f 6/ So
and g curves) due to considerable scattering in by phonon
emission.

(treating g as positive) for all i where g satisfies
Eq. (42). Therefore, as in the variational ap-
proach, the convergence of g; to g, or similarly
the mobility, forms a monotone sequence, i.e.,
any particular g; is a lower limit on g. In addi-
tion, the convergence of the sequence {g,} is rap-
id and nearly exponential so that the remaining
error after the ¢ +1 iteration is approximately
equal to the difference between the ¢ and ¢ + 1 itera-
tion.

Before explicitly relating g(2) to the mobility
(see Sec. VI), we justify the inclusion of (a)
Kane’s model®® for the conduction band, and (b)
piezoelectric scattering.'®!” Regarding the im-
portance of Kane’s model® of the conduction-band
structure and wave functions, Fig. 3 has been
plotted to compare electron mobility with Kane’s
model to a parabolic band. For parabolic bands,
a of Eq. (7) equals unity, ¢c=0, and the energy
Eq. (3) becomes 8=7%%k?/2m*. The mobilities for
parabolic bands in GaAs (with the largest energy
gap of the present materials) and InSb (the small-
est gap) are shown as dashed curves. The cor-
rect mobilities are plotted as solid curves. Evi-
dently, the InSb conduction band is considerably
nonparabolic, leading to 50% differences between
mobility for parabolic and nonparabolic bands. 28
In the wide-gap material GaAs, the valence-con-
duction-band interaction must be relatively small
so that nonparabolicity affects the mobility by only
about 10%.

The dominance of piezoelectric scattering to-
ward limiting the drift mobility at low tempera-
tures can be appreciated from the comparison in
Fig. 4. Piezoelectric scattering has been omitted
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FIG. 3. Comparison of electron drift mobility in GaAs
and InSb for parabolic and nonparabolic conduction bands.
The nonparabolic band model more accurately represents
the actual physical situation.

in the calculation of mobility plotted as dashed
curves in GaAs and InSb while the correct mobility
is represented by the solid curves. InSb has the
lowest polar -phonon Debye temperature (278 °K)

of the five materials being considered so that
polar-mode scattering dominates to lower temper -
atures (~40 °K) than in the remaining materials.
On the other hand, the polar-phonon Debye tem-
perature is relatively higher in GaAs (being

420 °K) so that the average phonon occupation
number [Eq. (23)] decreases rapidly with temper -
ature. In this case, polar-mode scattering be-
comes weaker than piezoelectric scattering at
lattice temperatures below 60 °K. For tempera-
tures as high as 150 °K in GaAs, piezoelectric
scattering causes a decrement in mobility of 11%.

VI. RESULTS

The mobility can be found immediately from
Eq. (44) and the following equations. First of all,
the distribution function must be normalized so
that

1= fodk . (45)
Now the mobility is
p=4a- (/m) [ [gk)/Fa)k3ak , (46)

where d is the relative density-of-states function
[Eq. (6)], which in the present context allows that
the group velocity of the electron wave function no
longer equals the phase velocity. Although the mo-
bility equation (46) contains the electric field mag-
nitude F, u is independent of F since g/F is inde-
pendent of F by Eq. (42), i.e., Ohm’s law is valid
at low electric fields.

There are 12 material parameters required for
calculating the electron drift mobility according to
the model of the previous sections. The necessary
quantities are listed in Table I. The mostaccurate
data available are probably those for GaAs. We
will discuss in detail only the data relevant to
GaAs as an illustration of how Table I has evolved
from a wide selection of experimental evidence
(see, for example, Refs.35-37).

The electron effective mass at the conduction-
band edge in GaAs has been measured and re-
viewed by Chamberlain and Stradling, *® whose dis-
cussion indicates m*=0.0655m (assumed temper -
ature independent for the present work). For the
energy-gap parameters [Eq. (11)] &,(0) is taken
as the thermal gap at zero temperature® while
the linear coefficient of thermal expansion®®7 is
assigned an average temperature-independent
value. The compressibility K also is assumed
temperature independent and is calculated from
the elastic constants®® c¢;; through the relation K
=3/(cyy +2¢y5). These various assumptions of
temperature independence do not effect errors in
mobility of more than a few percent. Polar-mode
scattering, depending as it does on the small dif-
ference between the relatively large high- and low-
frequency dielectric constants [Eqgs. (22)and (26)],
is sensitive to small errors in €; and €,. How-
ever, experimental values for the product €€,
are well established.® %7 For this reason, €,
and €., have been determined from €y€., and €y/€,
= (vo/v1)?, where v, and v, are the respective lon-

108 T T T ]
-\ \——— WITHOUT PIEZOELECTRIC SCATTERING
" WITH PIEZOELECTRIC SCATTERING
°
b \
3 \\
107 f— —
g 5 ]
=Y = ]
> — \ —
r
i \ Insb
[14] —
o
=
108 —
10° |

50 100 150 200
TEMPERATURE, T (°K)

FIG. 4. Electron drift mobility in GaAs and InSb
including (a) polar-mode, deformation-potential accustic-
mode, and piezoelectric scattering (solid lines), and
(b) neglecting piezoelectric scattering.
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TABLE I. Material parameters.

Quantity GaAs GaSb InP InAs InSb
Effective mass 0.0655 0.047 0.067 0.022 0.013
m*/m
Zero-temperature energy 1.58 0.80 1.48 0.46 0.265
gap 8 ,(0) (eV)

Energy-gap temperature 1.20 1.16 0.50 0.79 1.12
coefficient

310 &, /8 P) 1 /K(10™eV/°K)

Low-frequency dielectric 12.90 15.00 12.30 14,55 18.70
constant €

High-frequency dielectric 10.92 13.80 9.56 11.78 16.76
constant €,

Polar-phonon Debye 420 346 501 350 278
temperature Ty, (°K)

Material density 5.36 5.66 4,83 5.71 5.82
p (g/cm?)

Sound speed 5.24 4.36 5.16 4.28 3.80
u, (km/sec)

Acoustic deformation 7.0 6.7 6.5 4.9 7.2
potential E; (eV)

Piezoelectric constant 0.160 0.126 0.035 0.045 0.071
614(C/m2)

Sound speed 4.03 3.35 3.85 3.17 2,78
u, (km/sec)

gitudinal and transverse optical phonon frequen-
cies® at the center of the first Brillouin zone.

€, and €., from direct measurements**™*# (respec-
tively, 13.0 and 10.9) compare favorably to €,
and €. derived in the above way (respectively,
12.90 and 10.92). The ratio €,/€. does not ap-
pear to be significantly temperature dependent. *?
The polar-phonon Debye temperature® is T,
=fw,,/k. The density p follows from the lattice
constant® and the sound speeds u, and u, assume
average values. E; is calculated as suggested by
Ehrenreich? and does not include dependences of
the valence-band position upon strain. Although
E; may thus be in considerable error, the mobil-
ity is fairly unaffected because deformation-po-
tential scattering is quite weak. The piezoelectric
constant ey, except for InP and InAs, is probably
more accurate than the 10-20% stated by Arlt and
Quadflieg® in view of the good agreement with

theory.3* These considerations lead cumulatively
to the estimated errors in mobility stated in Sec.
I.

The electron drift mobilities versus tempera-
ture of GaAs, GaSb, and InP are presented in
Fig. 5. At higher temperatures, there is some
transfer of electrons into higher-lying valleys
near the edges of the first Brillouin zone.?” Due
to this effect, the results of Fig. b are estimated
to be accurate to 10% only below 500 °K in GaAs,
170 °K in GaSb, and 600 °K in InP. The unreliable
portions of the curves above these temperatures
in Fig. 5 are dotted. Since mobilities are fre-
quently quoted at 300 and at 77 °K, the mobility at
these temperatures is tabulated in Table II.

The mobilities versus temperature for InAs and
InSb appear in Fig. 6, where again the curves at
higher temperatures are dotted. These regions
indicate the failure of the present model for these
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TABLE II. Calculated electron drift mobility (cm?/V sec).
Temperature (°K) GaAs GasSb InP InAs InSb
300 8920 ooo 6860 31800 129 000
77 2.96x10° 5.76 x10° 5.86 % 10° 1.50%104 3.08x10%

narrow energy-gap materials because of degen-
eracy.?® The density of thermally stimulated car-
riers is considerable in InSb at room tempera-
ture®® (n=2%10' cm=?). Above 350 °K, transport
in InSb must include Fermi statistics. InAs should
be reasonably nondegenerate up to 600 °K.
Experimental data from Hall measurements at
high** and low*® temperatures on GaAs provide es-
sential confirmation of the present results. In
Fig. 7 the electron drift mobility in GaAs from the
present work is plotted as a solid curve. The
solid data points for temperatures 50-300 °K are
derived from Hall mobility measurements pub-
lished by Hicks and Manley. * High-temperature
(> 300 °K) Hall data by Chang** are plotted as tri-
angular points in Fig. 7. Since polar-mode scat-
tering dominates in both these GaAs samples
above 100 °K, the conversion from Hall mobility
to drift mobility can be, and has been, made in the

TEMPERATURE, T (°K)
800 300 150 77 50 40

ST T I T T
6
4.—

MOBILITY, 4 (cm¥ v sec)

| | 1

|
0 10 20
INVERSE TEMPERATURE, 1000/T (1/°K)

FIG. 5. Electron drift mobility in GaAs, GaSb, and
InP. The dotted portions of the curves at higher tem-
peratures are not reliable (see text) because of electron
transport in higher-lying conduction-band minima.

figure from Ehrenreich’s®® results on InSb. In
any case, the correction on this account does not
exceed 20% and is, therefore, hardly noticeable
on the scale of Fig. 7. Undoubtedly the experi-
mentally derived mobility below 80 °K is limited
by impurity scattering®® which is not of interest
here. The high-temperature data fall somewhat
farther below the predicted curve for tempera-
tures exceeding 450 °K than is to be expected.
This difference remains unresolved. The expla-
nation may reside in a revised estimate of the
energy separation between the (000) and (100)
valleys (taken to be 0.36 eV 2%), Temperature de-
pendences of the effective mass® and dielectric
constants*'s %% 47 have the wrong trends for lower-
ing the mobility with increasing temperature.

In the region of room temperature, the experi-
mental data bracket the theoretical curve which,
incidentally, derives from a calculation entirely
devoid of adjustable parameters. This fact in

TEMPERATURE, T (°K)
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FIG. 6. Electron drift mobility in InAs and InSb. The
dotted portions of the curves at higher temperatures are
not reliable (see text) because of degeneracy.
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FIG. 7. Comparison between electron drift mobility
in GaAs calculated with parameters listed in Table I
(solid curve) and drift mobility derived from experi-
mental Hall mobility data via thoeretical Hall factor cor-
rection (solid points from Hicks and Manley®’; triangular
points from Chang®).

addition to the substantial agreement over the
120-500 °K region suggests a satisfactory verifi-
cation of the present model for pure material.
Note added in proof. The present technique for
calculating drift mobilities has been successfully
extended to include ionized impurity scattering and
equivalent intervalley scattering appropriate to in-

ELECTRON MOBILITY IN DIRECT-GAP POLAR:- " 1023

direct- as well as direct-gap semiconductors. Elec-

tron-hole scattering lowers the room-temperature
mobility in InSb to 70400 cm?/V sec as opposed to
the value shown in Table II. Result for impure
materials and for indirect-gap materials will be
published in the near future.
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APPENDIX

The spherically averaged elastic stiffness con-
stants which yield #, in Eq. (31) and u, in Eq. (38)
have been calculated by Zook.*® For deformation-
potential acoustic-mode scattering in zinc-blende
crystals,

pu§=c, ’ (A1)
where*® c;=%(3c1 + 2015+ 4Cy) (A2)

and the elastics constants®® are c;

For piezoelectric scattering by the longitudinal
electric fields of longitudinal and transverse
acoustic modes,

1/pul = &£(12/c, +16/c,) , (A3)

where® c¢,=3(cy ~—C1a+3c) . (A4)
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Recently, experiments on the properties of electrons in semiconductor inversion layers

havebeen carried out at very high electric fields.

These fields correspond to electronic occupa-

tion of more than one of the discrete electric subbands created for motion perpendicular to the sur-
face. Previous theoretical investigation on the problem was limited to the case when one sub-
band is populated. In this paper we examine the more general case of having many subbands
occupied, studying in detail two particular properties of the system. The first is the electron
screening of an external potential described very conveniently by a matrix dielectric function.
The second is the scattering of electrons by screened charged impurities and its contribution

to the surface conductivity.

I. INTRODUCTION

When a sufficiently strong electric field is ap-
plied across the interface of an insulator and a p-
type semiconductor, an n-type inversion layer is
formed in the semiconductor localized near the
surface. This occurs when the conduction-band
edge is bent near or below the Fermi level in the
bulk. The shape of the bending is determined by
the self-consistent electrostatic potential arising
mainly from the electrons in the inversion layer,
The self-consistent potential produces discrete
levels for motion in the direction perpendicular to

the surface. These levels are known as electric
subbands. The motions of the electrons in the
direction parallel to the surface remain essentially
Bloch-like, As the field increases, the energies
of the discrete levels are lowered and at the same
time their separations become larger. Eventually
these subbands drop below the bulk Fermi surface
in succession. In this paper we shall be concerned
entirely with the properties of the inversion layers
at high enough field such that several of the dis-
crete subbands are occupied and the population in
the continuum levels is negligible.?

Stern and Howard? represented the first system-



